Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis
Tatsuya Sakurahara,
Grant Schumock,
Seyed Reihani,
Ernie Kee and
Zahra Mohaghegh
Reliability Engineering and System Safety, 2019, vol. 185, issue C, 84-99
Abstract:
Common Cause Failures (CCFs) are critical risk contributors in complex technological systems as they challenge multiple redundant systems simultaneously. To improve the CCF analysis in Probabilistic Risk Assessment (PRA), this research develops the Simulation-Informed Probabilistic Methodology (S-IPM) for CCFs. This new methodology utilizes simulation models of physical failure mechanisms to capture underlying causalities and to generate simulation-based data for the CCF probability estimation. To operationalize the S-IPM in PRA, a computational algorithm is developed that generates simulation-based estimates of CCF parameters and, using the Bayesian approach, integrates them with the data-driven CCF parameters (if relevant data available) from the existing PRA. This computational algorithm is equipped with the Probabilistic Validation that quantifies the degree of confidence in the simulation-based parameter estimates by characterizing and propagating epistemic uncertainty in multiple levels of analysis. The S-IPM can (i) provide more realistic CCF probability estimates by considering CCF data generated from simulations; (ii) reflect as-built, as-operated plant conditions, considering the updates in design, operational, and maintenance policies; and (iii) contribute to more effective prevention and mitigation of CCFs by providing “cause-specific†quantitative risk insights. The paper shows a case study that applies S-IPM to the CCFs of emergency service water pumps of NPPs.
Keywords: Common Cause Failure (CCF); Probabilistic Risk Assessment (PRA); Uncertainty quantification; Probabilistic Validation; Stress Corrosion Cracking (SCC); Nuclear Power Plant (NPP) (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018302734
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:185:y:2019:i:c:p:84-99
DOI: 10.1016/j.ress.2018.12.007
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().