Enhancing resilience analysis of power systems using robust estimation
Lijuan Shen and
Loon Ching Tang
Reliability Engineering and System Safety, 2019, vol. 186, issue C, 134-142
Abstract:
It has been well-recognized that the distribution of the blackout size of a power grid system has a heavy tail. The power-law distribution is a popular model for the heavy-tail phenomenon, and it is widely used in power system disruptions. However, there are significant reporting errors in the disruption data reported in public available databases, such as the database of the Electric Disturbance Events (OE-417) maintained by the US Department of Energy. Traditional inference techniques such as the maximum likelihood estimation can be sensitive to such contaminated data due to the reporting errors. In this paper, we propose a robust estimation procedure for the power-law distribution based on the minimum distance estimation method. A comprehensive simulation is used to evaluate the performance of the proposed method, and compare the performance with the existing maximum likelihood method. It is found that the proposed method outperforms the existing maximum likelihood method in the presence of contaminated data. We apply the proposed method to the blackout data from Jan 2002 to Aug 2016 based on the OE-417 database.
Keywords: Heavy-tailed; Maximum likelihood; Minimum distance estimation; Log-log plot; Disruption (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018312316
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:186:y:2019:i:c:p:134-142
DOI: 10.1016/j.ress.2019.02.022
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().