A hybrid prognostic method for system degradation based on particle filter and relevance vector machine
Yang Chang and
Huajing Fang
Reliability Engineering and System Safety, 2019, vol. 186, issue C, 51-63
Abstract:
Prognostics of the remaining useful life has become a critical technique to ensure the reliability and safety of system, however, due to the uncertainty of system degradation, the prognostic result is usually not so satisfactory. To solve this problem, a hybrid prognostic scheme with the capability of uncertainty assessment is proposed in this paper, which combines particle filter (PF) and relevance vector machine (RVM). The prognostic result comprises a set of deterministic prediction values to represent the degradation process and a prediction interval to evaluate the prediction uncertainty. In order to examine the performance of the proposed hybrid method, four types of comparative experiments based on two types of lithium-ion battery datasets and two degradation models are performed. The experimental results show that the proposed hybrid scheme is a reliable prognostic method which can ensure the accuracy of the deterministic prediction result and provide precise assessment for the prediction uncertainty.
Keywords: Prognostics; Particle filter; Relevance vector machine; Deterministic prediction; Prediction interval; Lithium-ion battery (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018309086
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:186:y:2019:i:c:p:51-63
DOI: 10.1016/j.ress.2019.02.011
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().