Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model
Naipeng Li,
Nagi Gebraeel,
Yaguo Lei,
Linkan Bian and
Xiaosheng Si
Reliability Engineering and System Safety, 2019, vol. 186, issue C, 88-100
Abstract:
The growth of the Industrial Internet of Things (IIoT) has generated a renewed emphasis on research of prognostic degradation modeling whereby degradation signals, such as vibration signals, temperature and acoustic emissions, are used to estimate the state-of-health and predict the remaining useful life (RUL). Besides the inherent system state, external operating conditions, such as the rotational speed and load also play a significant role in the behavior of degradation signals. Time-varying operating conditions often cause two major effects on the degradation signals. First, they change the degradation rate of systems. Second, they cause signal jumps at condition change-points. These two factors make RUL prediction more difficult under time-varying operating conditions. This paper proposes a RUL prediction method by introducing these two factors into a state-space model. Changes in the degradation rate are introduced into a state transition function, and jumps in the degradation signals are introduced into a measurement function. The separate analysis of these two factors makes it possible to distinguish their own contributions to RUL prediction, thus avoiding false alarms and improving the prediction accuracy. The effectiveness of the proposed method is demonstrated using both a simulation study and an accelerated degradation test of rolling element bearings.
Keywords: Prognostic degradation modeling; Remaining useful life prediction; Time-varying operating conditions; State-space model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018313024
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:186:y:2019:i:c:p:88-100
DOI: 10.1016/j.ress.2019.02.017
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().