Probability models for data-Driven global sensitivity analysis
Zhen Hu and
Sankaran Mahadevan
Reliability Engineering and System Safety, 2019, vol. 187, issue C, 40-57
Abstract:
This paper presents a probability model-based global sensitivity analysis (PM-GSA) framework, to compute various Sobol’ indices when only input-output data are available. The PM-GSA framework consists of two main elements, namely data extraction and probability model training. The data extraction step extracts data of the variables of interest (VoI) and quantity of interest (QoI) from an input-output data matrix. Following that, a probability model is built to approximate the joint probability density function between the VoI and QoI. The learned probability model is then used to compute various Sobol’ indices. The implementation of the PM-GSA framework is investigated through three probability models including Gaussian copula model, Gaussian mixture model, and a new Gaussian mixture copula model. The number of dimensions of the probability model in the PM-GSA framework, is independent of the number of input variables and is always N+1 (e.g. 2 for the first-order index), where N is the order of the Sobol’ index. In addition, the PM-GSA framework is applicable to global sensitivity analysis with not only independent input variables, but also with dependent input variables and for sets of variables. Four numerical examples are used to demonstrate the effectiveness of the proposed method and analyze the advantages and disadvantages of the different probability models.
Keywords: Global sensitivity analysis; Gaussian mixture; Copula; High-dimensional; Data (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017307913
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:187:y:2019:i:c:p:40-57
DOI: 10.1016/j.ress.2018.12.003
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().