Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty
Zhaolong Li,
Chun Jin,
Pan Hu and
Cong Wang
Reliability Engineering and System Safety, 2019, vol. 188, issue C, 503-514
Abstract:
Recovery from major disasters is generally divided into an emergency recovery phase (ERP) and a comprehensive recovery phase (CRP). The ERP has multiple difficulties and limits. This paper investigates the optimization of the transportation network recovery strategy (TNRS) during the ERP under uncertainty. First, two resilience metrics are proposed to measure the recovery rapidity and the cumulative loss of network performance. Second, by applying connectivity as an indicator of transportation network performance, the resilience-based bi-level programming model is established for both deterministic and stochastic cases. The upper level determines which road segments need to be restored and the repair time sequence to maximize the system resilience. The lower level formulates the user response to the upper decision as a User Equilibrium (UE) with a time series. Then, a novel algorithm that integrates a genetic algorithm for the parallel machine scheduling problem (PMSP) and the Frank–Wolfe algorithm for the UE is designed. Finally, the procedure and the effectiveness of the proposed method are demonstrated via a case study.
Keywords: Recovery strategy optimization; Transportation network; Resilience; Emergency recovery phase; Bi-level programming; Uncertainty (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018309505
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:188:y:2019:i:c:p:503-514
DOI: 10.1016/j.ress.2019.03.052
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().