An improved NSGA2 to solve a bi-objective optimization problem of multi-state electronic transaction network
Cheng-Ta Yeh
Reliability Engineering and System Safety, 2019, vol. 191, issue C
Abstract:
An electronic transaction network (ETN) plays a very important role in communications among trading partners. Transmission reliability is of concern to system supervisors. This study adopts a binary-state physical line allocation strategy, minimizing cost and maximizing transmission reliability for an ETN with a known network structure, in which the ETN is represented by arcs and nodes. The strategy is to allocate adequate binary-state physical lines to arcs. Particularly, the physical lines allocated to the same arc could be in correlated failure owing to maintenance. That is, the ETN can be modeled as a multi-state flow network with correlated failures for reliability evaluation. For solving this bi-objective optimization problem, an improved fast non-dominated sorting genetic algorithm II (iNSGA2), integrating the NSGA2 and k-means algorithm, is proposed, where the k-means is utilized to expand the search space of the NSGA2. A set of non-dominated solutions is found by the iNSGA2, and then, the technique for order preference by similarity to an ideal solution (TOPSIS) is adopted to determine the compromise alternative from the set. By solving this problem, the system supervisor can improve ETN stability at a reasonable expense without changing the network structure.
Keywords: Multi-state electronic transaction network; Binary physical line allocation; Correlated failure; Allocation cost; Transmission reliability; Improved fast non-dominated sorting genetic algorithm (iNSGA2); Technique for order preference by similarity to an ideal solution (TOPSIS) (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018313784
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:191:y:2019:i:c:s0951832018313784
DOI: 10.1016/j.ress.2019.106578
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().