Human-system concurrent task analysis for maritime autonomous surface ship operation and safety
M.A. Ramos,
Christoph A. Thieme,
Ingrid B. Utne and
A. Mosleh
Reliability Engineering and System Safety, 2020, vol. 195, issue C
Abstract:
Maritime Autonomous Surface Ships (MASS) are the subject of a diversity of projects and some are in testing phase. MASS will probably include operators working in a shore control center (SCC), whose responsibilities may vary from supervision to remote control, according to Level of Autonomy (LoA) of the voyage. Moreover, MASS may operate with a dynamic LoA. The strong reliance on Human-Autonomous System collaboration and the dynamic LoA should be comprised on the analysis of MASS to ensure its safety; and are shortcomings of current methods. This paper presents the Human-System Interaction in Autonomy (H-SIA) method for MASS collision scenarios, and illustrates its application through a case study. H-SIA consists of an Event Sequence Diagram (ESD) and a concurrent task analysis (CoTA). The ESD models the scenario in a high level and consists of events related to all system's agents. The CoTA is a novel method to analyse complex systems. It comprises of Task Analysis of each agent, which are preformed concurrently, and uses specific rules for re-description. The H-SIA method analyses the system as whole, rather than focus on each component separately, allowing identification of dependent tasks between agents and visualization of propagation of failure between the agents’ tasks.
Keywords: Autonomous ships; Autonomous systems; Safety; Risk (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018313085
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:195:y:2020:i:c:s0951832018313085
DOI: 10.1016/j.ress.2019.106697
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().