Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition
El Moçayd, Nabil,
M. Shadi Mohamed,
Driss Ouazar and
Mohammed Seaid
Reliability Engineering and System Safety, 2020, vol. 195, issue C
Abstract:
We propose a non-intrusive stochastic model reduction method for polynomial chaos representation of acoustic problems using proper orthogonal decomposition. The random wavenumber in the well-established Helmholtz equation is approximated via the polynomial chaos expansion. Using conventional methods of polynomial chaos expansion for uncertainty quantification, the computational cost in modelling acoustic waves increases with number of degrees of freedom. Therefore, reducing the construction time of surrogate models is a real engineering challenge. In the present study, we combine the proper orthogonal decomposition method with the polynomial chaos expansions for efficient uncertainty quantification of complex acoustic wave problems with large number of output physical variables. As a numerical solver of the Helmholtz equation we consider the finite element method. We present numerical results for several examples on acoustic waves in two enclosures using different wavenumbers. The obtained numerical results demonstrate that the non-intrusive reduction method is able to accurately reproduce the mean and variance distributions. Results of uncertainty quantification analysis in the considered test examples showed that the computational cost of the reduced-order model is far lower than that of the full-order model.
Keywords: Proper orthogonal decomposition; Polynomial chaos expansion; Uncertainty quantification; Stochastic helmholtz equation; Acoustic waves (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019303242
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019303242
DOI: 10.1016/j.ress.2019.106733
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().