Remaining useful lifetime prediction via deep domain adaptation
Paulo Roberto de Oliveira da Costa,
Akçay, Alp,
Yingqian Zhang and
Uzay Kaymak ()
Reliability Engineering and System Safety, 2020, vol. 195, issue C
Abstract:
In Prognostics and Health Management (PHM) sufficient prior observed degradation data is usually critical for Remaining Useful Lifetime (RUL) prediction. Most previous data-driven methods assume that training (source) and testing (target) condition monitoring data have similar distributions. However, due to different operating conditions, fault modes and noise, distribution and feature shift exist across different domains. This shift reduces the performance of predictive models when no target observed run-to-failure data is available. To address this issue, this paper proposes a new data-driven approach for domain adaptation in prognostics using Long Short-Term Neural Networks (LSTM). We use a Domain Adversarial Neural Network (DANN) approach to adapt remaining useful life estimates to a target domain containing only sensor information. We analyse our approach using the NASA Commercial Modular Aero-Propulsion System Simulation (C-MAPPS). The results show that the proposed method can provide more reliable RUL predictions than models trained only on source data for varying operating conditions and fault modes.
Keywords: Remaining useful lifetime; Deep learning; Transfer learning; Domain adaptation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019304946
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019304946
DOI: 10.1016/j.ress.2019.106682
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().