Towards Efficient Robust Optimization using Data based Optimal Segmentation of Uncertain Space
Priyanka D. Pantula and
Kishalay Mitra
Reliability Engineering and System Safety, 2020, vol. 197, issue C
Abstract:
Performing multi-objective optimization under uncertainty is a common requirement in industries and academia. Robust optimization (RO) is considered as an efficient and tractable approach provided one has access to behavioral data for the uncertain parameters. However, solutions of RO may be far from the real solution and less reliable due to inability to map the uncertain space accurately, especially when the data appears discontinuous and scattered in the uncertain domain. Amalgamating machine learning algorithms with RO, this paper proposes a data-driven methodology, where a novel fuzzy clustering mechanism is implemented along-with boundary construction, to transcript the uncertain space such that the specific regions of uncertainty are identified. Subsequently, using intelligent Sobol sampling, samples are generated in the mapped uncertain regions. Results of two test cases are presented along with a comprehensive comparison study. Considered case-studies include highly nonlinear model for continuous casting process from steelmaking industries, where a multi-objective optimization problem under uncertainty is solved to balance the conflict between productivity and energy consumption. The Pareto-optimal solutions of the resulting RO problem are obtained through Non-Dominated Sorting Genetic Algorithm – II, and ~23–29% improvement is observed in the uncertain objective function. Further, the spread and diversity metrics are enhanced by ~10–95% as compared to those obtained using other standard uncertainty sets.
Keywords: Data-driven robust optimization; Fuzzy clustering; Boundary construction; Sobol sampling; Multi-objective optimization; Pareto-optimal solutions (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183201930119X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:197:y:2020:i:c:s095183201930119x
DOI: 10.1016/j.ress.2020.106821
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().