Reliability analysis with stratified importance sampling based on adaptive Kriging
Sinan Xiao,
Sergey Oladyshkin and
Wolfgang Nowak
Reliability Engineering and System Safety, 2020, vol. 197, issue C
Abstract:
In reliability engineering, estimating the failure probability of a system is one of the most challenging tasks. Since many applied engineering tasks are computationally expensive, it is challenging to estimate failure probabilities using acceptable computational costs. In this paper, to reduce computational cost, we combine a stratified importance sampling method with an adaptive Kriging strategy to estimate failure probabilities. Compared to the importance sampling method, stratified importance sampling needs fewer samples to get an estimate of failure probability with the same coefficient of variation. In the proposed method, we improve the importance sampling density and determine the best input variable for stratification through a Kriging-based model surrogate technique (like a Gaussian process regression). Then, the Kriging surrogate is further adaptively improved to get an accurate estimate of failure probability. The efficiency of the proposed method is demonstrated using several analytic examples and then transferred to a carbon dioxide storage benchmark problem.
Keywords: Reliability analysis; Stratified importance sampling; Variance-based sensitivity measure; Kriging; Adaptive learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019301383
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019301383
DOI: 10.1016/j.ress.2020.106852
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().