Deep reinforcement learning-based sampling method for structural reliability assessment
Zhengliang Xiang,
Yuequan Bao,
Zhiyi Tang and
Hui Li
Reliability Engineering and System Safety, 2020, vol. 199, issue C
Abstract:
Surrogate model methods are widely used in structural reliability assessment, but conventional sampling methods require a large number of experimental points to construct a surrogate model. Inspired by the learning process of the AlphaGo, which is essentially optimization of sampling, we proposed a deep reinforcement learning (DRL)-based sampling method for structural reliability assessment. First, the sampling space and the existing samples are transformed into an array that is treated as the state in DRL. Second, a deep neural network is designed as the agent to observe the sampling space and select new experimental points, which are treated as actions. Finally, a reward function is proposed to guide the deep neural network to select experimental points along the limit state surface. Two numerical examples including a benchmark problem are employed to illustrate the sampling ability of the proposed method for structural reliability calculation. The simulation results demonstrate that the proposed method can learn to select experimental points along the limit state surface. Comparing with the direct Monte Carlo simulation, AK-MCS, Latin hypercube sampling, and subset simulation methods, the results show that the proposed DRL-based sampling method has an advantage in dealing with highly nonlinear problems.
Keywords: Structural reliability; Deep reinforcement learning; Deep Neural Network; Surrogate model; Failure probability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019300791
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019300791
DOI: 10.1016/j.ress.2020.106901
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().