EconPapers    
Economics at your fingertips  
 

Two-interdependent-performance multi-state system: Definitions and reliability evaluation

Changzheng Shao and Yi Ding

Reliability Engineering and System Safety, 2020, vol. 199, issue C

Abstract: Many engineering systems are designed to complete two tasks simultaneously and therefore need to consider two interdependent performance measures. For example, a combined heat and power (CHP) system requires two interdependent performance variables of heat power and electric power to measure its reliability. The operation of such a two-interdependent-performance multi-state system (TIP-MSS) is usually constrained by a two-dimension feasible operating region (FOR) specific to the state. Hence, the performance rate of the TIP-MSS system in each state should be represented by the upper boundary of the FOR corresponding to the concept of “capacity†in the single-performance MSS model. Considering the interdependence between the performance variables, the concept and definitions of the TIP-MSS are proposed. An object, i.e., the performance trade-off curve, is utilized to represent the performance rates. The universal generating function (UGF) method is extended to represent the performance distribution of a TIP-MSS. Moreover, different composition operators are defined for analyzing the reliability of TIP-MSS with parallel/series structures. The availability criterion based on the TIP-UGF method is also proposed. Finally, the proposed models and methods are illustrated by two numerical examples.

Keywords: Index terms—multi-state system; Two-interdependent-performance; Reliability evaluation; Universal generating function (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019305071
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019305071

DOI: 10.1016/j.ress.2020.106883

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2024-12-28
Handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019305071