EconPapers    
Economics at your fingertips  
 

Time-variant reliability analysis for industrial robot RV reducer under multiple failure modes using Kriging model

Hua-Ming Qian, Yan-Feng Li and Hong-Zhong Huang

Reliability Engineering and System Safety, 2020, vol. 199, issue C

Abstract: This paper proposes a time-variant reliability method for an industrial robot rotate vector (RV) reducer with multiple failure modes using a Kriging model. Firstly, the limit state functions of the industrial robot RV reducer are built by considering time-variant load and material degradation based on the failure physic method. Secondly, a time-variant reliability analysis method for multiple failure modes is proposed based on a double-loop Kriging model. The inner loop is the extremal optimization for each limit state function based on the efficient global optimization (EGO). The outer loop is the active learning reliability analysis by combining multiple response Gaussian process model (MRGP) and the Monte Carlo simulation (MCS). Furthermore, three learning functions (U-function, EFF-function and H-function) are individually adopted to choose a new sample point until the convergence is satisfied. Case studies are finally provided to illustrate the effectiveness of the proposed method.

Keywords: Industrial robot; RV reducer; Multiple response Gaussian process; Time-variant reliability; Kriging; Efficient global optimization; Learning function (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019305289
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019305289

DOI: 10.1016/j.ress.2020.106936

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019305289