Optimization problems for a parallel system with multiple types of dependent components
Serkan Eryilmaz and
Murat Ozkut
Reliability Engineering and System Safety, 2020, vol. 199, issue C
Abstract:
This paper is concerned with two optimization problems for a parallel system that consists of dependent components. First, the problem of finding the number of elements in the system that minimizes the mean cost rate of the system is considered. The second problem is concerned with the optimal replacement time of the system. Previous work assumes that the components are independent. We discuss the impact of dropping this assumption. In particular, we numerically examine how the dependence between the components affects the optimal number of units and replacement time for the system which minimize mean cost rates. We first consider the case when the components are exchangeable and dependent, i.e. the system consists of single type of dependent components. Subsequently, we consider a system that consists of multiple types of dependent components. Comparative numerical results are presented for particularly chosen dependence models.
Keywords: Copulas; Parallel system; Reliability; Replacement time (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019307987
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019307987
DOI: 10.1016/j.ress.2020.106911
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().