Analytical reliability estimation of SRAM-based FPGA designs against single-bit and multiple-cell upsets
Reza Ramezani,
Juan Antonio Clemente and
Francisco J. Franco
Reliability Engineering and System Safety, 2020, vol. 202, issue C
Abstract:
This paper addresses the problem of hardware tasks reliability estimation in harsh environments. A novel statistical model is presented to estimate the reliability, the mean time to failure, and the number of errors of hardware tasks running on static random-access memory (SRAM)-based partially run-time reconfigurable field programmable gate arrays (FPGAs) in harsh environments by taking both single-bit upsets and multiple-cell upsets into account. The model requires some features of the hardware tasks, including their computation time, size, the percent of critical bits, and the soft error rates of k-bit events (k ≥ 1) of the environment for the reliability estimation. Such an early estimation helps the developers to assess the reliability of their designs at earlier stages and leads to reduce the development cost. The proposed model has been evaluated by conducting several experiments on actual hardware tasks over different environmental soft error rates. The obtained results, endorsed by the 95% confidence interval, reveal the high accuracy of the proposed model. When comparing this approach with a reliability model (developed by the authors in a previous work) that does not consider the occurrence of multiple-cell upsets, an overestimation of the mean time to failure of 2.88X is observable in the latter. This points to the importance of taking into account multiple events, especially in modern technologies where the miniaturization is high.
Keywords: Reliability model; Multiple cell upsets; Soft errors; Hardware tasks; FPGA-based designs (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832020305378
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305378
DOI: 10.1016/j.ress.2020.107036
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().