EconPapers    
Economics at your fingertips  
 

Uncertainty quantification in machining deformation based on Bayesian network

Xiaoyue Li, Yinfei Yang, Liang Li, Guolong Zhao and Ning He

Reliability Engineering and System Safety, 2020, vol. 203, issue C

Abstract: Uncertainty quantification in the analysis of machining systems is of great importance for continuously improving product quality, reliability, and efficiency of manufacturing processes. This paper presents a novel method for quantifying the influence of uncertain factors on machining deformation. Initially, uncertainties are evaluated using the method of moment estimation and least squares method for autoregressive models, deemed prior information. Then, a Bayesian network for machining deformation is established. Finally, all prior information is imported into the Bayesian model and an algorithm is used to compute the posterior probability. The influence of residual stress on machining deformation was taken as an example, and a detailed analysis was carried out. Our findings highlight the uncertainty of machining-induced residual stress (MRS), which was found to vary from 0.12 to 0.36, and the uncertainty of initial residual stress (IRS), which varied from 0.18 to 0.53. Furthermore, the presence of machining-induced residual stress increased the probability of machining deformation from 1.0% to 6.4%; while initial residual stress can increase the probability of machining deformation by up to 17.8%. For other factors such as material properties, workpiece geometry and stiffness of the machining system, the total combined influence of uncertainties on machining deformation was 9.1028E-04. The results highlight the importance of quantifying the effect of uncertainties on machining deformation.

Keywords: Uncertainty quantification; Residual stress; Machining deformation; Bayesian network; Probability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832020306141
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020306141

DOI: 10.1016/j.ress.2020.107113

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020306141