Vulnerability of bridges to individual and multiple hazards- floods and earthquakes
Sotirios A. Argyroudis and
Stergios Aristoteles Mitoulis
Reliability Engineering and System Safety, 2021, vol. 210, issue C
Abstract:
Building resilient bridges, that are able to withstand multiple natural stressors with minimal damage and quickly restore their functionality is paramount to delivering climate-resilient transport infrastructure. Nevertheless, bridges are proven to be vulnerable to natural hazards, with floods and earthquakes being the main causes of failure. The available research and practice for assessing the vulnerability of river-crossing bridges is predominantly qualitative and therefore relies heavily on visual inspections, while ignoring important characteristics of the complex water-soil-bridge interaction. This is a knowledge gap that this paper aims to fill. This work provides novel fragility models for hydraulically induced stressors and/or combinations of hydraulic and seismic hazards. To achieve this, unique detailed two- and three- dimensional numerical models are employed, for a typical three-span prestressed box-girder river-crossing bridge. This paper is a primer on the vulnerability of flood-critical bridges as it models the entire water-soil-bridge system, taking into account critical hydraulic stressors (scour, debris accumulation, hydraulic forces), the uncertainty in scour hole formation, and all components of integral and isolated bridges: deck, bearings, piers and abutments, backfill, and the foundation soil. A detailed description of the damage modes for each component is given and sets of fragility curves for floods and combinations of hydraulic stressors and earthquakes are developed. The study concludes that integral bridges are in most cases more vulnerable to local scour than bridges with bearings, since the latter are more flexible and can therefore adapt to changes in their geometry. The opposite is true for global scour and/or seismic earthquake excitations. The generated fragility models are useful tools for quantitative risk assessment of transport systems and provide practical means in resilience-based asset management by owners and operators of transport infrastructure.
Keywords: Bridge; Flood; Scour; Earthquake; Fragility; Failure modes; Numerical modelling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021001162
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021001162
DOI: 10.1016/j.ress.2021.107564
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().