Machine learning for reliability engineering and safety applications: Review of current status and future opportunities
Zhaoyi Xu and
Joseph Homer Saleh
Reliability Engineering and System Safety, 2021, vol. 211, issue C
Abstract:
Machine learning (ML) pervades an increasing number of academic disciplines and industries. Its impact is profound, and several fields have been fundamentally altered by it, autonomy and computer vision for example; reliability engineering and safety will undoubtedly follow suit. There is already a large but fragmented literature on ML for reliability and safety applications, and it can be overwhelming to navigate and integrate into a coherent whole. In this work, we facilitate this task by providing a synthesis of, and a roadmap to this ever-expanding analytical landscape and highlighting its major landmarks and pathways. We first provide an overview of the different ML categories and sub-categories or tasks, and we note several of the corresponding models and algorithms. We then look back and review the use of ML in reliability and safety applications. We examine several publications in each category/sub-category, and we include a short discussion on the use of Deep Learning to highlight its growing popularity and distinctive advantages. Finally, we look ahead and outline several promising future opportunities for leveraging ML in service of advancing reliability and safety considerations. Overall, we argue that ML is capable of providing novel insights and opportunities to solve important challenges in reliability and safety applications. It is also capable of teasing out more accurate insights from accident datasets than with traditional analysis tools, and this in turn can lead to better informed decision-making and more effective accident prevention.
Keywords: Machine learning; Reliability; Safety; Prognostic and health management; Deep learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (87)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021000892
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021000892
DOI: 10.1016/j.ress.2021.107530
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().