EconPapers    
Economics at your fingertips  
 

Remaining useful life estimation using deep metric transfer learning for kernel regression

Yifei Ding, Minping Jia, Qiuhua Miao and Peng Huang

Reliability Engineering and System Safety, 2021, vol. 212, issue C

Abstract: Accurate estimation of remaining useful life (RUL) is indispensable for the safe operation of rotating machinery, reducing maintenance costs and unnecessary downtime. Numerous data-driven models have been reported to predict the RUL of bearings using historical data. However, it is still very challenging to predict the RUL of bearings under different operating conditions. It is necessary to propose a model which can extract domain invariant deep features and accurately predict the RUL of bearings under new operating condition. In this paper, a novel method called deep transfer metric learning for kernel regression (DTMLKR) is proposed and applied to the RUL prediction of bearings under multiple operating conditions. This method combines deep metric learning with transfer learning (TL) to solve regression problems. Case studies on the IEEE PHM Challenge 2012 dataset demonstrate the effectiveness of the proposed method. Compared with other state-of-the-art methods, the superiority of the proposed method is verified.

Keywords: Deep metric learning; Transfer learning; Remain useful life prediction; Rolling bearings (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021001332
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001332

DOI: 10.1016/j.ress.2021.107583

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001332