Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition
Xiaodong Xu,
Shengjin Tang,
Chuanqiang Yu,
Jian Xie,
Xuebing Han and
Minggao Ouyang
Reliability Engineering and System Safety, 2021, vol. 214, issue C
Abstract:
Time-varying temperature condition has a significant impact on discharge capacity and aging law of lithium-ion battery. Consequently, a novel remaining useful life (RUL) prediction method for lithium-ion battery under time-varying temperature condition is developed in this paper. Firstly, a stochastic degradation rate model based on Arrhenius temperature model is proposed, and an interesting battery capacity conversion path from random temperature condition to reference temperature condition is established. Secondly, the aging model of lithium-ion battery under time-varying temperature condition is developed based on Wiener process, and a two-step unbiased estimation method based on maximum likelihood estimation (MLE) combined with genetic algorithm (GA) is proposed. Next, the random parameter is online updated under Bayesian framework. Then the probability density function (PDF) of the RUL for lithium-ion battery under time-varying temperature condition is derived. Finally, a case study is implemented to verify the effectiveness, and the results show that the proposed prediction method has higher accuracy and smaller uncertainty.
Keywords: Lithium-ion battery; time-varying temperature; Arrhenius; Wiener process; remaining useful life; Bayesian framework (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021002131
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021002131
DOI: 10.1016/j.ress.2021.107675
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().