A dynamic stochastic methodology for quantifying HAZMAT storage resilience
Chao Chen,
Ming Yang and
Genserik Reniers
Reliability Engineering and System Safety, 2021, vol. 215, issue C
Abstract:
A disruption to hazardous (flammable, explosive, and toxic) material (HAZMAT) storage plants may trigger escalation effects, resulting in more severe storage performance losses and making the performance restoration more difficult. The disruption, such as an intentional attack, may be difficult to predict and prevent, thus developing a resilient HAZMAT storage plant may be a practical and effective way to deal with these disruptions. This study develops a dynamic stochastic methodology to quantify the resilience of HAZMAT storage plants. In this methodology, resilience evolution scenarios are modeled as a dynamic process that consists of four stages: disruption, escalation, adaption, and restoration stages. The resistant capability in the disruption stage, mitigation capability in the escalation stage, adaption capability in the adaption stage, and restoration capability in the restoration stage are quantified to obtain the HAZMAT storage resilience. The uncertainties in the disruption stage and the mitigation stage are considered, and the dynamic Monte Carlo method is used to simulate possible resilience scenarios and thus quantify the storage resilience. A case study is used to illustrate the developed methodology, and a discussion based on the case study is provided to find out the critical parameters and resilience measures.
Keywords: Hazardous material; Storage resilience; Escalation effects; Uncertainty; Dynamic evolution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021004269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021004269
DOI: 10.1016/j.ress.2021.107909
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().