An integrated deep learning-based approach for automobile maintenance prediction with GIS data
Chong Chen,
Ying Liu,
Xianfang Sun,
Carla Di Cairano-Gilfedder and
Scott Titmus
Reliability Engineering and System Safety, 2021, vol. 216, issue C
Abstract:
Predictive maintenance (PdM) can be beneficial to the industry in terms of lowering maintenance cost and improve productivity. Remaining useful life (RUL) prediction is an important task in PdM. The RUL of an automobile can be impacted by various surrounding factors such as weather, traffic and terrain, which can be captured by the geographical information system (GIS). Recently, most researchers have conducted studies of RUL modelling based on sensor data. Owing to the fact that the collection of sensor data is expensive, while maintenance data is relatively easy to obtain. This study aims to establish an automobile RUL prediction model with GIS data through a data-driven approach. In this approach, firstly, due to the data type and sampling rate of the maintenance data and GIS data are different, a data integration scheme was researched. Secondly, the Cox proportional hazard model (Cox PHM) was introduced to construct the health index (HI) for the integrated data. Then, a deep learning structure called M-LSTM (Merged-long-short term memory) network was designed for HI modelling based on the integrated data which contains both sequential data and ordinary numeric data. Finally, the RUL was mapped by predicted HI and the Cox PHM. An experimental study using a sizable real-world fleet maintenance dataset provided by a UK fleet company revealed the effectiveness of the proposed approach and the impact of the GIS factors on the automobiles under investigation.
Keywords: Predictive maintenance; RUL prediction; Deep learning; GIS; Machine learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202100435X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:216:y:2021:i:c:s095183202100435x
DOI: 10.1016/j.ress.2021.107919
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().