EconPapers    
Economics at your fingertips  
 

Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors

Jichao Zhuang, Minping Jia, Yifei Ding and Peng Ding

Reliability Engineering and System Safety, 2021, vol. 216, issue C

Abstract: Many data-driven models normally assume that the training and test data are independent and identically distributed to predict the remaining useful life (RUL) of industrial machines. However, different failure models caused by variable failure behaviors may lead to a domain shift. Meanwhile, conventional methods lack comprehensive attention to temporal information, resulting in a limitation. To handle the aforementioned challenges, a transferable cross-domain approach for RUL estimation is proposed. The hidden features are extracted adaptively by a temporal convolution network in which residual self-attention is able to fully consider the contextual degradation information. Furthermore, a new cross-domain adaption architecture with the contrastive loss and multi-kernel maximum mean discrepancy is designed to learn the domain invariant features. The effectiveness and superiority of the proposed method are proved by the case study on IEEE PHM challenge 2012 bearing dataset and the comparison with other methods.

Keywords: Transfer learning; Cross-domain adaptation; Variable failure behaviors; Remaining useful life estimation; Temporal convolutional network; Rolling bearing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021004592
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004592

DOI: 10.1016/j.ress.2021.107946

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004592