Conditional Gaussian mixture model for warranty claims forecasting
Abdallah Chehade,
Mayuresh Savargaonkar and
Vasiliy Krivtsov
Reliability Engineering and System Safety, 2022, vol. 218, issue PB
Abstract:
Forecasting warranty claims for complex products is a reliability challenge for most manufacturers. Several factors increase the complexity of warranty claims forecasting, including, the limited number of claims reported at the early stage of launch, reporting delays, dynamic change in the fleet size, and design/manufacturing adjustments for the production line. The aggregated effect of those complexities is often referred to as the “warranty data maturation†effect. Unfortunately, most of the existing models for warranty claims forecasting fail to explicitly consider warranty data maturation. This work address warranty data maturation by proposing the Conditional Gaussian Mixture Model (CGMM). CGMM uses historical warranty data from similar products to develop a robust prior joint Gaussian mixture distribution of warranty trends at both, the current and future maturation levels. CGMM then utilizes Bayesian theories to estimate the conditional posterior distribution of the warranty claims at the future maturation level conditional on the warranty data available at the current maturation level. The CGMM identifies non-parametric temporal warranty trends and automatically clusters products into latent groups to establish (learn) an effective prior joint distribution. The CGMM is validated on an extensive automotive warranty claims dataset comprising of four model years and >15,000 different components from >10 million vehicles.
Keywords: Bayesian statistics; Gaussian mixture model; Machine learning; Reliability; Warranty (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021006645
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006645
DOI: 10.1016/j.ress.2021.108180
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().