EconPapers    
Economics at your fingertips  
 

On a simple scheme for systems modeling and identification using big data techniques

Sebastian T. Glavind, Juan G. Sepulveda and Michael H. Faber

Reliability Engineering and System Safety, 2022, vol. 220, issue C

Abstract: In the field of reliability engineering and systems safety, it is a common challenge to identify the state of a system with basis in a limited set of observations of system performances. Often, there are a multitude of different possible system states, including states of damages, which compete in explaining the observations. To account for these in the context of risk-informed management of systems, the probabilities of the relevant possible different states are needed. In the present contribution, an idea on how this might be supported through big data techniques is presented. Here, systems are considered more holistically and not only as the relationship between input and output. The starting point is to establish a knowledge-consistent probabilistic representation of the system, its key performance characteristics, and the observations (exposures, condition state and performances) that may be collected from the system in reality. Monte Carlo simulations are then employed to establish the relevant scenarios of realizations of the random variables describing possible system states, system performance characteristics, and observations. Using big data classification on the simulated scenarios, the probabilities of the system being in a given state, given particular outcomes of observations, may then be straightforwardly evaluated. The application of the presented idea is illustrated through two examples considering damage identification in structural systems subject to extreme loading.

Keywords: Systems modeling; Observations; Big data; System identification; Structural damage identification (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021006979
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021006979

DOI: 10.1016/j.ress.2021.108219

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021006979