Time-dependent kinematic reliability analysis of gear mechanism based on sequential decoupling strategy and saddle-point approximation
Junhua Chen,
Longmiao Chen,
Linfang Qian,
Guangsong Chen and
Shijie Zhou
Reliability Engineering and System Safety, 2022, vol. 220, issue C
Abstract:
Accurate and efficient reliability evaluation is critical to ensure the safety of gear mechanism. This paper aims to develop an effective and practical method for time-dependent kinematic reliability of gear mechanism. Firstly, dynamic model of gear mechanism is established, and a surrogate model of kinematic error is obtained based on BP neural network. After that, we employ a sequential decoupling strategy of efficient global optimization to transform the time-dependent reliability problem into a time-independent one, with which the second-order information of the extreme limit-state function can be then obtained. Finally, the saddle-point approximation method is applied to estimate the time-dependent kinematic reliability of the gear mechanism. The accuracy and efficiency of the proposed method are verified by several engineering problems, and comparisons are made against other existing reliability methods. Results of the engineering cases show that the proposed method can effectively reduce the limit-state function call numbers while reaching the same accuracy as Monte Carlo Simulation.
Keywords: Time-dependent kinematic reliability; Gear mechanism; Sequence decoupling strategy; Saddle-point approximation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021007638
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007638
DOI: 10.1016/j.ress.2021.108292
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().