EconPapers    
Economics at your fingertips  
 

Simulation optimization framework for dynamic probabilistic safety assessment

Jong Woo Park and Seung Jun Lee

Reliability Engineering and System Safety, 2022, vol. 220, issue C

Abstract: Probabilistic safety assessment (PSA) based on event trees and fault trees has been widely used in the risk assessment of nuclear power plants. A static approach by nature, PSA has limitations to consider dynamic scenarios with time-dependent sequences and interactions. In contrast to static-based PSA, dynamic PSA has been introduced as a complementary methodology that considers dynamic scenarios between the system and human operations by interfacing physical simulation with thermal-hydraulic models for risk assessment. However, the various research on dynamic PSA has a common challenge in that the number of dynamic scenarios to be simulated increases impractically. An approach is therefore necessary to manage the number of simulations for performing dynamic PSA efficiently. The objective of this paper is to propose a simulation optimization framework using an optimization algorithm to reduce, as much as reasonably achievable, the large number of dynamic scenarios to be evaluated. The optimization algorithm is proposed to optimize the large numbers of generated dynamic scenarios while maintaining accurate risk quantification in the performance of dynamic PSA. To demonstrate the application of the proposed framework to dynamic PSA, two case studies were conducted considering loss of coolant accidents.

Keywords: Dynamic PSA; Simulation optimization framework; Optimization algorithm; TH simulation; Loss of coolant accident (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021007869
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007869

DOI: 10.1016/j.ress.2021.108316

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007869