EconPapers    
Economics at your fingertips  
 

Prognostic health management of repairable ship systems through different autonomy degree; From current condition to fully autonomous ship

Ahmad BahooToroody, Mohammad Mahdi Abaei, Osiris Valdez Banda, Pentti Kujala, Filippo De Carlo and Rouzbeh Abbassi

Reliability Engineering and System Safety, 2022, vol. 221, issue C

Abstract: Maritime characteristics make the progress of automatic operations in ships slow, especially compared to other means of transportation. This caused a great progressive deal of attention for Autonomy Degree (AD) of ships by research centers where the aims are to create a well-structured roadmap through the phased functional maturation approach to autonomous operation. Application of Maritime Autonomous Surface Ship (MASS) requires industries and authorities to think about the trustworthiness of autonomous operation regardless of crew availability on board the ship. Accordingly, this paper aims to prognose the health state of the conventional ships, assuming that it gets through higher ADs. To this end, a comprehensive and structured Hierarchal Bayesian Inference (HBI)-based reliability framework using a machine learning application is proposed. A machinery plant operated in a merchant ship is selected as a case study to indicate the advantages of the developed methodology. Correspondingly, the given main engine in this study can operate for 3, 17, and 47 weeks without human intervention if the ship approaches the autonomy degree of four, three, and two, respectively. Given the deterioration ratio defined in this study, the acceptable transitions from different ADs are specified. The aggregated framework of this study can aid the researchers in gaining online knowledge on safe operational time and Remaining Useful Lifetime (RUL) of the conventional ship while the system is being left unattended with different degrees of autonomy.

Keywords: Mass; Prognostic health management; Remaining useful lifetime; Bayesian inference (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022000345
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:221:y:2022:i:c:s0951832022000345

DOI: 10.1016/j.ress.2022.108355

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:221:y:2022:i:c:s0951832022000345