EconPapers    
Economics at your fingertips  
 

Optimal sequencing of elements activation in 1-out-of-n warm standby system with storage

Gregory Levitin, Liudong Xing and Yuanshun Dai

Reliability Engineering and System Safety, 2022, vol. 221, issue C

Abstract: Despite the rich body of research on reliability analysis and optimization of warm standby systems, the existing works have mostly failed to consider the practical storage component of such systems. This paper advances the state of the art by modeling and optimizing the reliability of a 1-out-of-n warm standby system with product storage, characterized by a maximum capacity, and specific uploading and downloading paces constraints. The storage may accumulate surplus product when the performance of the operating element exceeds the demand and compensate product deficiency otherwise. A numerical algorithm based on the probabilistic model is first proposed to evaluate the reliability or success probability of the system mission (MSP) that must satisfy a pre-specified demand during a required mission time. As a further contribution, the optimal element activation sequence problem is formulated and solved to maximize the mission success probability. Influences of several model parameters (storage capacity, demand, mission time, element reliability, and storage uploading/downloading pace constraints) on the MSP and optimization solutions are investigated through an example of a power system.

Keywords: Warm standby; Sequencing; Mission success probability; Product storage (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022000576
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:221:y:2022:i:c:s0951832022000576

DOI: 10.1016/j.ress.2022.108380

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:221:y:2022:i:c:s0951832022000576