A multi-layer spiking neural network-based approach to bearing fault diagnosis
Lin Zuo,
Fengjie Xu,
Changhua Zhang,
Tangfan Xiahou and
Yu Liu
Reliability Engineering and System Safety, 2022, vol. 225, issue C
Abstract:
Effective fault diagnosis is a crucial way to reduce the occurrence of severe damages of many industrial products. With the increasing amount of condition monitoring data, deep-learning-based methods have become promising ways for intelligent fault diagnosis thanks to their automatic feature extraction capability. Most recently, the third-generation neural network, called spiking neural network (SNN), has been introduced as an effective tool for fault diagnosis. However, the internal state and the error function of neurons in the SNN model cannot satisfy the conditions of continuity and differentiability, resulting in the difficulty of the gradient back-propagation, and it, therefore, prevents the extension of the SNN to a deep manner. In this article, a probabilistic spiking response model (PSRM) with a multi-layer structure is put forth to enhance the performance of the SNN in terms of bearing fault diagnosis. In the PSRM, the extracted features from the local mean decomposition (LMD) method are converted into the probability pulse sequences, and a multi-layer learning algorithm is developed to facilitate the multi-layer network training. The fault diagnosis results from three bearing databases, i.e., CWRU, MFPT, and Paderborn University datasets, demonstrate that the proposed PSRM exceeds a majority of the state-of-the-art machine learning methods. The proposed multi-layer SNN can also provide transparency to different bearing fault patterns by the membrane potentials of the spiking neurons in the output layer.
Keywords: Multi-layer spiking neural network; Pulse sequence probability encoding; Bearing fault diagnosis; Probabilistic spiking response model (PSRM) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022002095
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002095
DOI: 10.1016/j.ress.2022.108561
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().