Remaining capacity estimation for lithium-ion batteries via co-operation of multi-machine learning algorithms
Xing Shu,
Jiangwei Shen,
Zheng Chen,
Yuanjian Zhang,
Yonggang Liu and
Yan Lin
Reliability Engineering and System Safety, 2022, vol. 228, issue C
Abstract:
Accurate capacity estimation of lithium-ion batteries is of great significance to guarantee their reliability and safety operation. In this paper, a fused capacity estimation method is devised via the co-operation of multi-machine learning algorithms. First, the peak value of incremental capacity curve is extracted as the health feature, and the support vector machine is engaged in data processing and mitigation of the noise-induced unfavorable interference. Then, the preliminary remaining capacity values are estimated based on the incorporation of support vector machine, long short-term memory network and Gaussian process regression with the support of the abstracted health feature. Finally, the random forest algorithm is employed to supply more accurate capacity estimation to fuse the preliminary remaining capacity values. The experimental validations showcase that the advanced algorithm enables to fuse the advantages of individual learners and improve the estimation accuracy. The results indicate that the proposed method can estimate the remaining capacity with the root mean square error of less than 2.4%. In addition, the robustness to noise corruption and the generality to different battery cells are also verified.
Keywords: Capacity estimation; Lithium-ion batteries; Multi-machine learning; Incremental capacity; Random forest (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022004409
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:228:y:2022:i:c:s0951832022004409
DOI: 10.1016/j.ress.2022.108821
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().