EconPapers    
Economics at your fingertips  
 

Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges

Yanwen Xu, Sara Kohtz, Jessica Boakye, Paolo Gardoni and Pingfeng Wang

Reliability Engineering and System Safety, 2023, vol. 230, issue C

Abstract: The computerized simulations of physical and socio-economic systems have proliferated in the past decade, at the same time, the capability to develop high-fidelity system predictive models is of growing importance for a multitude of reliability and system safety applications. Traditionally, methodologies for predictive modeling generally fall into two different categories, namely physics-based approaches and machine learning-based approaches. There is a growing consensus that the modeling of complex engineering systems requires novel hybrid methodologies that effectively integrate physics-based modeling with machine learning approaches, referred to as physics-informed machine learning (PIML). Developing advanced PIML techniques is recognized as an important emerging area of research, which could be particularly beneficial in addressing reliability and system safety challenges. With this motivation, this paper provides a review of the state-of-the-art of physics-informed machine learning methods in reliability and system safety applications. The paper highlights different efforts towards aggregating physical information and data-driven models as grouped according to their similarity and application area within each group. The goal is to provide a collection of research articles presenting recent developments of this emergent topic, and shed light on the challenges and future directions which we, as a research community, should focus on for harnessing the full potential of advanced PIML techniques for reliability and safety applications.

Keywords: Physics-informed; Machine learning; Surrogate modeling; Reliability; Safety (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022005154
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005154

DOI: 10.1016/j.ress.2022.108900

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005154