EconPapers    
Economics at your fingertips  
 

Intelligent fault diagnosis of bevel gearboxes using semi-supervised probability support matrix machine and infrared imaging

Xin Li, Yong Li, Ke Yan, Haidong Shao and (Jing) Lin, Janet

Reliability Engineering and System Safety, 2023, vol. 230, issue C

Abstract: Fault diagnosis is of great significance to ensure the reliability and safety of complex bevel gearbox systems. Most existing intelligent fault diagnosis approaches of bevel gearboxes are designed with vibration monitoring. However, the collected vibration data are vulnerable to noise pollution and machinery operating conditions. Besides, traditional fault diagnosis models highly rely on numerous labeled samples, and neglect the high cost of label annotation in real-world applications. Therefore, a novel fault diagnosis approach based on semi-supervised probability support matrix machine (SPSMM) and infrared imaging is proposed for bevel gearboxes in this paper, which has the following properties. Firstly, SPSMM classifies 2D matrix data directly without vectorization, thus fully utilizing the spatial information in infrared images. Secondly, a probability output strategy is designed for SPSMM to calculate the posterior class probability estimation of matrix inputs, and consequently enhance the diagnostic accuracy and robustness of the model. Thirdly, a semi-supervised learning (SSL) framework is proposed for SPSMM to carry out sample transfer from the unlabeled sample pool to the labeled sample pool, which can effectively alleviate the problem of insufficient labeled samples. The superiority of the proposed diagnosis approach is demonstrated with an infrared imaging dataset of a bevel gearbox.

Keywords: Intelligent fault diagnosis; Support matrix machine; Probability output strategy; Semi-supervised learning; Infrared imaging (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022005361
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005361

DOI: 10.1016/j.ress.2022.108921

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005361