Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach
He Lan,
Xiaoxue Ma,
Weiliang Qiao and
Wanyi Deng
Reliability Engineering and System Safety, 2023, vol. 230, issue C
Abstract:
Ship collision accidents often result in serious casualties and property losses. Predicting the severity of ship collisions is beneficial to improve maritime transport safety. Therefore, this study proposes a data-driven approach integrating association rule mining (ARM), complex network (CN), and random forest (RF) to explore the correlation among risk factors and determine the critical risk factors for predicting the severity of ship collision accidents. Specifically, ARM is integrated with CN to develop the risk interaction network of ship collisions and to identify the criticality of risk factors. Then, RF is employed to predict the severity of ship collisions, and determine the risk factors that have a critical effect on severity prediction. The results show that poor team communication is the most critical risk factor for predicting the severity of ship collisions. Moreover, the criticality of risk factors is different in the risk networks and prediction model. Results from this study would help relevant stakeholders to assess current risks and tailor safety strategies to reduce the severity of ship collisions.
Keywords: Ship collisions; Complex network; Association rule; Random forest (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202200549X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:230:y:2023:i:c:s095183202200549x
DOI: 10.1016/j.ress.2022.108934
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().