EconPapers    
Economics at your fingertips  
 

Multi-source domain generalization for degradation monitoring of journal bearings under unseen conditions

Ning Ding, Hulin Li, Qi Xin, Bo Wu and Dan Jiang

Reliability Engineering and System Safety, 2023, vol. 230, issue C

Abstract: Degradation detection and remaining useful life (RUL) prediction are the essential tasks of Prognostics and Health Management (PHM) designed to increase the reliability of key components and reduce unpredictable maintenance costs. Due to the lack of enough degradation monitoring data under unseen working conditions or equipment conditions in practical applications, the performance of most existing deep learning and transfer learning RUL prediction models will deteriorate. To address this problem, this paper combines the advantages of Gated Recurrence Unit (GRU) and Transformer structures to propose a multi-source domain generalization learning method. The proposed method can extract the generalized degradation feature representations from multiple available offline run-to-failure datasets under different known working conditions or equipment conditions to assist the prognosis tasks for practical application scenarios. The run-to-failure datasets of internal combustion engine journal bearings are used for case studies to validate the proposed method. The calculation results prove the superiority and effectiveness of the proposed method.

Keywords: RUL prediction; Multi-source domain generalization; GRU; Transformer; Degradation detection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022005816
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005816

DOI: 10.1016/j.ress.2022.108966

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005816