Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification
Mingqiang Lin,
Yuqiang You,
Wei Wang and
Ji Wu
Reliability Engineering and System Safety, 2023, vol. 230, issue C
Abstract:
With the widespread use of lithium-ion batteries in various fields, battery failures become the most critical concerns that may lead to enormous economic losses and even serious safety issues. The prognostics and health management of lithium-ion batteries helps to ensure reliable and safe battery operations. Existing studies on the state of health of batteries mainly focus on improving and refining prediction models, while the emerging technologies that address uncertainty issues in the battery degradation process are also receiving more and more attention. In this paper, we propose a new state of health prediction method by using the gated recurrent unit neural networks and the hidden Markov model with considering uncertainty quantification. According to the empirical mode decomposition, the battery capacity is decomposed into the global downward trend and the local fluctuations. We train gated recurrent unit neural networks to fit the long-term global downward trend without gradient vanishing, and a hidden Markov model to fit the local fluctuations for quantifying the uncertainty introduced by the capacity recovery phenomenon in battery degradation. Finally, numerical experiments are conducted on two famous datasets, the experimental results demonstrate that the proposed method outperforms on the accuracy and reliability for battery state of health prediction.
Keywords: Lithium-ion battery; State of health; Prognostics and health management; Uncertainty quantification; gated recurrent unit; Hidden Markov model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022005932
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005932
DOI: 10.1016/j.ress.2022.108978
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().