EconPapers    
Economics at your fingertips  
 

A variational local weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-domain condition

Jiusi Zhang, Xiang Li, Jilun Tian, Yuchen Jiang, Hao Luo and Shen Yin

Reliability Engineering and System Safety, 2023, vol. 231, issue C

Abstract: Most supervised learning-based approaches follow the assumptions that offline data and online data must obey a similar distribution, which is difficult to satisfy in realistic remaining useful life (RUL) prediction. To solve the problem, domain adaptation (DA) learning-oriented transfer learning (TL) was proposed. Nevertheless, only adopting a conventional global DA approach may confuse the fine-grained features between subdomains represented by different degenerate stages. Consequently, a novel variational auto-encoder-long–short-term memory network-local weighted deep sub-domain adaptation network (VLSTM-LWSAN) is proposed for RUL prediction. Specifically, the input data are compressed into the interpretable latent space, from which the fine-grained features between subdomains are local alignment through local weighted deep sub-domain adaptation network. In this sense, the discrepancy between the unlabeled target domain and the source domain is decreased. The proposed VLSTM-LWSAN is verified by an aircraft turbofan engine dataset. The research results represent that the VLSTM-LWSAN outperforms some deep learning approaches without transfer learning and conventional transfer learning approaches.

Keywords: Remaining useful life; Transfer learning; Variational auto-encoder; Local weighted deep sub-domain adaptation; Prediction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022006019
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:231:y:2023:i:c:s0951832022006019

DOI: 10.1016/j.ress.2022.108986

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:231:y:2023:i:c:s0951832022006019