Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations
Pramudita Satria Palar,
Lavi Rizki Zuhal and
Koji Shimoyama
Reliability Engineering and System Safety, 2023, vol. 232, issue C
Abstract:
Surrogate models are indispensable tools in uncertainty quantification and global sensitivity analysis. Polynomial chaos expansion (PCE) is one of the most widely used surrogate models, thanks to its faster convergence rate compared to Monte Carlo simulation. In some cases, especially for complex problems, analyzing the complexity of the random input–output relationship (e.g., nonlinearity and interactions between input variables) may reveal additional information and useful insight. To that end, this paper introduces the use of Shapley additive explanations (SHAP) to help the explanation of a PCE model. Originating from game theory and machine learning, SHAP computes the contribution of the input variables to the single prediction level. SHAP enables visual inspection of the nonlinearity and interaction between variables from a PCE model. In addition, as an alternative to Sobol indices, SHAP also quantifies the relative importance of the inputs to the output. This paper introduces a procedure to calculate SHAP values from a PCE model without explicitly building multiple PCE models. A fast and exact algorithm that enables the calculation of SHAP for high-dimensional problems is presented. The usefulness of SHAP with PCE is demonstrated on several algebraic and non-algebraic problems.
Keywords: Polynomial chaos expansion; Explainability; Shapley additive explanations (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022006603
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006603
DOI: 10.1016/j.ress.2022.109045
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().