Accident risk tensor-specific covariant model for railway accident risk assessment and prediction
Yangpeng Wang,
Shuxiang Li,
Kangkuen Lee,
Hwayaw Tam,
Yuanju Qu,
Jingyin Huang and
Xianghua Chu
Reliability Engineering and System Safety, 2023, vol. 232, issue C
Abstract:
The safety-cusp catastrophe model can describe both the continuous changing process of system safety and the emergent property of accidents. However, the model framework needs to be developed in data fusion to realize real-time accident risk prediction. In this paper, based on the tensor analysis, an accident risk tensor field is derived from the safety-cusp catastrophe model. To dynamically assess the railway accident risk, an accident risk tensor-specific covariant (ART-SC) model is constructed based on the accident risk tensor field, where the accident risk of railway systems is synchronously measured by using the concept of specific covariant (SC) risk. By combining the ART-SC model with the mixture density networks (MDN), the analysis results of the actual monitoring data of a railway system show that the Gaussian disturbance is related to the high accident risk. Accordingly, a specific covariant risk-Gaussian disturbance identification (SCR-Gaussian DI) method is proposed to realize the real-time prediction of the high accident risk of railway systems. The analysis results based on the real-world monitoring data prove that the ART-SC model is reasonable, and the SCR-Gaussian DI method can accurately predict the high accident risk faced by the railway system in the train running process in real time.
Keywords: Catastrophe theory; Tensor analysis; Railway system; Accident risk (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022006846
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006846
DOI: 10.1016/j.ress.2022.109069
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().