Failure diagnosis of a compressor subjected to surge events: A data-driven framework
Leonardo Leoni,
Filippo De Carlo,
Mohammad Mahdi Abaei,
Ahmad BahooToroody and
Mario Tucci
Reliability Engineering and System Safety, 2023, vol. 233, issue C
Abstract:
Due to higher reliability and safety requirements, the importance of condition monitoring and failure diagnosis has progressively cleared up. In this context, being able to properly deal with noise and data reduction is fundamental for improving failure diagnosis and assuring safe operations. These tasks are particularly difficult in presence of many non-stationary and non-linear signals. Accordingly, this paper proposes a failure diagnosis methodology that integrates Empirical Mode Decomposition (EMD) and Neighborhood Component Analysis (NCA) for noise removal and data reduction. While noise detection and reduction techniques are established to reduce the uncertainties integrated with data acquisition, traditional approaches that cannot capture the non-stationary and non-linear nature of data might result in higher uncertainty. As a validated denoising method, EMD is applied to cope with the previous limitations. The NCA overcomes typical limitations such as imposing class distributions. After data pre-processing, the diagnosis is performed through a Random Forest. The methodology is tested on real data of a compressor subjected to surge, showing an accuracy higher than 97%. Moreover, the surge accuracy is close to 95%, while the regime accuracy is higher than 97%. The developed framework could assist practitioners in evaluating the condition of assets and, accordingly, planning maintenance.
Keywords: Condition monitoring; Failure diagnosis; Empirical mode decomposition; Neighborhood component analysis; Supervised classification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023000224
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:233:y:2023:i:c:s0951832023000224
DOI: 10.1016/j.ress.2023.109107
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().