Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines
Mihaela Mitici,
Ingeborg de Pater,
Anne Barros and
Zhiguo Zeng
Reliability Engineering and System Safety, 2023, vol. 234, issue C
Abstract:
The increasing availability of condition-monitoring data for components/systems has incentivized the development of data-driven Remaining Useful Life (RUL) prognostics in the past years. However, most studies focus on point RUL prognostics, with limited insights into the uncertainty associated with these estimates. This limits the applicability of such RUL prognostics to maintenance planning, which is per definition a stochastic problem. In this paper, we therefore develop probabilistic RUL prognostics using Convolutional Neural Networks. These prognostics are further integrated into maintenance planning, both for single and multiple components. We illustrate our approach for aircraft turbofan engines. The results show that the optimal replacement time for the engines is close to the lower bound of the 99% confidence interval of the RUL estimates. We also show that our proposed maintenance approach leads to a cost reduction of 53% compared to a traditional Time-based maintenance strategy. Moreover, compared with the ideal case when the true RUL is known in advance (perfect RUL prognostics), our approach leads to a limited number of failures. Overall, this paper proposes an end-to-end framework for data-driven predictive maintenance for multiple components, and showcases the potential benefits of data-driven predictive maintenance on cost and reliability.
Keywords: Predictive maintenance planning; Probabilistic remaining useful life prognostics; Aircraft; Maintenance scheduling; C-MAPSS turbofan engines (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202300114X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:234:y:2023:i:c:s095183202300114x
DOI: 10.1016/j.ress.2023.109199
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).