Kernel-based global sensitivity analysis obtained from a single data set
John Barr and
Herschel Rabitz
Reliability Engineering and System Safety, 2023, vol. 235, issue C
Abstract:
Results from global sensitivity analysis (GSA) often guide the understanding of complicated input–output systems. Kernel-based GSA methods have recently been proposed for their capability of treating a broad scope of complex systems. In this paper, we develop a new set of kernel GSA tools when only a single set of input–output data is available. Three key advances are made: (1) A new numerical estimator is proposed that demonstrates an empirical improvement over previous procedures. (2) A computational method for generating inner statistical functions from a single data set is presented. (3) A theoretical extension is made to define conditional sensitivity indices, which reveal the degree that the inputs carry shared information about the output when inherent input–input correlations are present. Utilizing these conditional sensitivity indices, a decomposition is derived for the output uncertainty based on what is called the optimal learning sequence of the input variables, which remains consistent when correlations exist between the input variables. While these advances cover a range of GSA subjects, a common single data set numerical solution is provided by a technique known as the conditional mean embedding of distributions. The new methodology is implemented on benchmark systems to demonstrate the provided insights.
Keywords: Global sensitivity analysis; Kernel methods; Moment-independent; Multivariate outputs (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023000881
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023000881
DOI: 10.1016/j.ress.2023.109173
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().