Remaining useful life estimation of ball-bearings based on motor current signature analysis
Miguel Angel Bermeo-Ayerbe,
Vincent Cocquempot,
Carlos Ocampo-Martinez and
Javier Diaz-Rozo
Reliability Engineering and System Safety, 2023, vol. 235, issue C
Abstract:
Remaining useful life (RUL) is the crucial element in predictive maintenance, helping to reduce significant costs in factories and avoiding production downtime. This work contributes to a non-intrusive condition monitoring to estimate the RUL of the most critical component in an electromechanical system, which does not depend on previous historical run-to-failure data. Although most of the approaches characterize the behavior of the mechanical components from a vibration analysis, this work is focused on monitoring the characteristic frequencies from the torque oscillations that are transmitted via the three-phase stator currents. In this way, several features can be extracted by processing the current signals. Modeling the behavior of the features in a healthy stage, a health indicator is proposed that measures how well a new sample fits the healthy model. This indicator is processed to ensure an indicator with a monotonically increasing trend. Therefore, a procedure is proposed to estimate the RUL by calculating multiple exponential regressions at each sampling time, considering only incremental samples. Based on a defined failure threshold and exponential regressions, a time-to-failure (TTF) non-parametric distribution is updated online, as more samples are processed, the most likely TTF is revealed over time and used to estimate RUL along with its confidence bounds. The proposed approach has been validated with three experiments performed on a run-to-failure ball-bearing testbed, lasting 65Â h, 30Â h and 180Â h. As a result, the methodology achieved high accuracy in anticipating bearing failures 50Â h, 26Â h, and 100Â h before failure; with an accuracy of 93.78%, 89.49% and 64.31%, respectively. A comparative assessment with reported approaches was carried out using the PRONOSTIA-FEMTO datasets, demonstrating the suitable performance of the proposed approach to converge faster to the real RUL with high accuracy.
Keywords: Prognostics; Remaining useful life; Non-intrusive load monitoring; Motor current signature analysis; Electromechanical system (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023001242
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001242
DOI: 10.1016/j.ress.2023.109209
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().