Full long-term buffeting analysis of suspension bridges using Gaussian process surrogate modelling and importance sampling Monte Carlo simulations
Dario Fernandez Castellon,
Aksel Fenerci,
Petersen, Øyvind Wiig and
Øiseth, Ole
Reliability Engineering and System Safety, 2023, vol. 235, issue C
Abstract:
Recent findings from full-scale measurements campaigns and analytical investigations of the design buffeting response of long-span bridges suggest that the assumptions adopted in most wind-resistant design guidelines are not strictly conservative. In such cases, a full long-term analysis is the most accurate alternative for reliability-based design. However, the application of such methodology becomes unfeasible due to the corresponding computational demand. Notably, many evaluations of the buffeting response are required, and time-consuming numerical integration is traditionally used to evaluate the long-term response. To overcome these drawbacks, this paper proposes a framework to increase the computational efficacy of long-term analyses for the wind-resistant design of long-span bridges by combining two strategies. First, the buffeting response is estimated with a Gaussian process regression that requires less time than the traditional multimodal buffeting response estimation. Then, long-term analysis is carried out using importance sampling Monte Carlo simulations that converge faster than the traditional analysis based on numerical integration. The computational framework is demonstrated in a case study of a proposed super-long suspension bridge subjected to loads induced by wind buffeting. The advantage of the proposed framework is verified, as it requires less than 1% of the computational demand of the traditional full long-term analysis.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023001266
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001266
DOI: 10.1016/j.ress.2023.109211
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().