A sequential decision problem formulation and deep reinforcement learning solution of the optimization of O&M of cyber-physical energy systems (CPESs) for reliable and safe power production and supply
Zhaojun Hao,
Francesco Di Maio and
Enrico Zio
Reliability Engineering and System Safety, 2023, vol. 235, issue C
Abstract:
The Operation & Maintenance (O&M) of Cyber-Physical Energy Systems (CPESs) is driven by reliable and safe production and supply, that need to account for flexibility to respond to the uncertainty in energy demand and also supply due to the stochasticity of Renewable Energy Sources (RESs); at the same time, accidents of severe consequences must be avoided for safety reasons. In this paper, we consider O&M strategies for CPES reliable and safe production and supply, and develop a Deep Reinforcement Learning (DRL) approach to search for the best strategy, considering the system components health conditions, their Remaining Useful Life (RUL), and possible accident scenarios. The approach integrates Proximal Policy Optimization (PPO) and Imitation Learning (IL) for training RL agent, with a CPES model that embeds the components RUL estimator and their failure process model. The novelty of the work lies in i) taking production plan into O&M decisions to implement maintenance and operate flexibly; ii) embedding the reliability model into CPES model to recognize safety related components and set proper maintenance RUL thresholds. An application, the Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED), is provided. The optimal solution found by DRL is shown to outperform those provided by state-of-the-art O&M policies.
Keywords: Cyber-Physical Energy System (CPES); Operation & Maintenance (O&M); Deep Reinforcement Learning (DRL); Nuclear Power Plant (NPP); Optimization; Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED) (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023001461
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001461
DOI: 10.1016/j.ress.2023.109231
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().