Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data
Minglei Zheng,
Junfeng Man,
Dian Wang,
Yanan Chen,
Qianqian Li and
Yong Liu
Reliability Engineering and System Safety, 2023, vol. 235, issue C
Abstract:
The maintenance cost and unplanned downtime caused by faults are an important part of the operation cost of wind turbines. Supervisory control and data acquisition (SCADA) data is a multivariate time series (MTS) for monitoring the status of wind turbines, in which anomaly patterns may indicate potential faults. The existing anomaly detection methods can neither extract and process pattern information in MTS stably, nor make reasonable use of a small amount of valuable labeled data. In this paper, we propose an end-to-end semi-supervised anomaly detection model including reconstruction model, prediction model and auxiliary discriminator, with a joint objective function. Combining reconstruction model and prediction model, the unsupervised model can effectively extract the inter-variable correlation and temporal dependence of MTS data. Further, using the semi-supervised auxiliary discriminator based on adversarial training, the proposed model can integrate expert knowledge to incrementally upgrade performance from unsupervised to supervised level. Our evaluation experiments are conducted on a public server dataset and a real-world wind turbine SCADA dataset. The results show that the F1-score of unsupervised model can exceed the several state-of-the-art baseline methods by 3.86% and 2.89%, and the F1-score can be increased to 98.60% and 98.30% after using the auxiliary discriminator.
Keywords: Wind turbine; SCADA data; Anomaly detection; Multivariate time series; Semi-supervised (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023001503
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001503
DOI: 10.1016/j.ress.2023.109235
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().