Implicit Kalman filtering method for remaining useful life prediction of rolling bearing with adaptive detection of degradation stage transition point
Guofa Li,
Jingfeng Wei,
Jialong He,
Haiji Yang and
Fanning Meng
Reliability Engineering and System Safety, 2023, vol. 235, issue C
Abstract:
Remaining useful life (RUL) prediction is a vital task in rolling bearing prognostics and health management (PHM) process. Kalman filtering (KF) is one of the hot spots in the research area of RUL prediction. However, three dispiriting shortcomings in KF methods are still unavoidable, including: (1) difficulty in tracking the unknown time-varying noise information, (2) the subjectivity for setting time to start prediction (TSP), and (3) short-term accuracy of the predicting results based on linear predictors. To improve the capability of KF methods, this work adopts the variational Bayesian technique to adaptively describe noise information and considers linear and nonlinear factors of multi-channel signals to recognize the degradation stage transition point of bearing as TSP. Moreover, this work proposes an implicit Kalman filtering method to predict the RUL. The effectiveness of the proposed method is validated on XJTU-SY and IMS-Rexnord bearing data. Results show that the proposed method can recognize the TSP and improve the long-term accuracy of the prediction result during the accelerated degradation stage.
Keywords: Implicit Kalman filtering method; Remaining useful life; Time to start prediction; Variational Bayesian; Rolling bearings (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023001849
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001849
DOI: 10.1016/j.ress.2023.109269
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().