Federated multi-source domain adversarial adaptation framework for machinery fault diagnosis with data privacy
Ke Zhao,
Junchen Hu,
Haidong Shao and
Jiabei Hu
Reliability Engineering and System Safety, 2023, vol. 236, issue C
Abstract:
Transfer learning can effectively solve the target task identification problem with the prerequisite of sharing all user data and target data, and has become one of the most popular algorithms in fault diagnosis. However, due to industry competition, privacy security and other factors, transfer learning methods often cannot directly deal with fault diagnosis problems under data privacy. Therefore, a federated multi-source domain adaptation method combining transfer learning and federated learning is proposed for machinery fault diagnosis with data privacy. The proposed method can comprehensively utilize all user data to achieve accurate identification of target data under the premise of data privacy protection. Specifically, a federated feature alignment idea is developed to minimize the difference in feature distribution between different client data and central server data, which can reduce the negative transfer phenomenon in the feature alignment process. Furthermore, a joint voting scheme is designed to fine-tune the global model with the help of pseudo-labeled samples to obtain more accurate fault diagnosis results. Massive experiments suggest that the proposed federated learning method has bright application prospects.
Keywords: Federated learning; Data privacy; Federated feature alignment; Negative transfer; Joint voting scheme (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023001618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023001618
DOI: 10.1016/j.ress.2023.109246
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().